246 research outputs found

    Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias

    Get PDF
    The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events

    Spatial heterogeneity of benthic methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva)

    Get PDF
    Heterogeneous benthic methane (CH4) dynamics from river deltas with important organic matter accumulation have been recently reported in various aquatic and marine environments. The spatial heterogeneity of dissolved CH4 concentrations and associated production and diffusion rates were investigated in the Rhone River Delta of Lake Geneva (Switzerland/France) using sediment cores taken as part of the éLEMO Project. Benthic CH4 dynamics within the complex subaquatic canyon structure of the Rhone Delta were compared (1) between three canyons of different sedimentation regimes, (2) along a longitudinal transect of the ‘active' canyon most influenced by the Rhone River, and (3) laterally across a canyon. Results indicated higher CH4 diffusion and production rates in the ‘active' compared to the other canyons, explained by more allochthonous carbon deposition. Within the active canyon, the highest diffusion and production rates were found at intermediate sites further along the canyon. Stronger resuspension of sediments directly in front of the river inflow was likely the cause for the variable emission rates found there. Evidence also suggests more CH4 production occurs on the levees (shoulders) of canyons due to preferred sedimentation in those locations. Our results from the heterogeneous Rhone delta in Lake Geneva further support the concept that high sedimentary CH4 concentrations should be expected in depositional environments with high inputs of allochthonous organic carbon

    Logopenic and nonfluent variants of primary progressive aphasia are differentiated by acoustic measures of speech production

    Get PDF
    Differentiation of logopenic (lvPPA) and nonfluent/agrammatic (nfvPPA) variants of Primary Progressive Aphasia is important yet remains challenging since it hinges on expert based evaluation of speech and language production. In this study acoustic measures of speech in conjunction with voxel-based morphometry were used to determine the success of the measures as an adjunct to diagnosis and to explore the neural basis of apraxia of speech in nfvPPA. Forty-one patients (21 lvPPA, 20 nfvPPA) were recruited from a consecutive sample with suspected frontotemporal dementia. Patients were diagnosed using the current gold-standard of expert perceptual judgment, based on presence/absence of particular speech features during speaking tasks. Seventeen healthy age-matched adults served as controls. MRI scans were available for 11 control and 37 PPA cases; 23 of the PPA cases underwent amyloid ligand PET imaging. Measures, corresponding to perceptual features of apraxia of speech, were periods of silence during reading and relative vowel duration and intensity in polysyllable word repetition. Discriminant function analyses revealed that a measure of relative vowel duration differentiated nfvPPA cases from both control and lvPPA cases (r2 = 0.47) with 88% agreement with expert judgment of presence of apraxia of speech in nfvPPA cases. VBM analysis showed that relative vowel duration covaried with grey matter intensity in areas critical for speech motor planning and programming: precentral gyrus, supplementary motor area and inferior frontal gyrus bilaterally, only affected in the nfvPPA group. This bilateral involvement of frontal speech networks in nfvPPA potentially affects access to compensatory mechanisms involving right hemisphere homologues. Measures of silences during reading also discriminated the PPA and control groups, but did not increase predictive accuracy. Findings suggest that a measure of relative vowel duration from of a polysyllable word repetition task may be sufficient for detecting most cases of apraxia of speech and distinguishing between nfvPPA and lvPPA

    Le Registre suisse pour la santé du cerveau - Une infrastructure nationale pour la recherche sur la maladie d’Alzheimer [The Swiss Brain Health Registry : a national infrastructure for Alzheimer's research]

    Get PDF
    The Memory Centres of several Swiss hospitals have set up a national online registry for Alzheimer's research, called www.BHR-suisse.org. This type of registry already exists in the United States (www.brainhealthregistry.org/) and the Netherlands (https://hersenonderzoek.nl/). It contributes, as do these initiating sites, to the creation of a global database of research partners <sup>b</sup> who wish to contribute by participating in studies on neurodegenerative diseases and more particularly on Alzheimer's disease. By registering, they provide a certain amount of information and become potential research partners. Researchers can then select a panel of volunteers according to the selection and exclusion criteria of their studies, contact them and include them in their studies

    Seismic detection of the martian core

    Get PDF
    Clues to a planet's geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 +/- 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight's location covers half the surface of Mars, including the majority of potentially active regions-e.g., Tharsis-possibly limiting the number of detectable marsquakes.This is InSight contribution 200. We acknowledge NASA, CNES, and partner agencies and institutions (UKSA, SSO, ESA-PRODEX, DLR, JPL, IPGP-CNRS, ETHZ, IC, and MPS-MPG) for the development of SEIS. Numerical simulations were supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s922 as well as HPC resources of CINES under the allocation A0090407341, made by GENCI. We thank B. Dintrans, director of CINES, for his efficient handling of our request for computational time. Figures were created using matplotlib (83), seismic data processing was done in ObsPy (84), and numerical evaluation was done in NumPy and SciPy (85, 86). Funding: S.C.S., A.K., D.G., J.C., A.C.D., G.Z., and N.D. acknowledge support from ETHZ through the ETH+ funding scheme (ETH+2 19-1: “Planet MARS”). S.C.S. acknowledges funding from ETH research grant ETH-10 17-3. W.B.B., A.G.M., M.P.P., and S.E.S. were supported by the NASA InSight mission and funds from the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). D.A. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 724690). The French teams acknowledge support from CNES as well as Agence Nationale de la Recherche (ANR-14-CE36-0012-02 and ANR-19-CE31-0008-08). A.R. was financially supported by the Belgian PRODEX program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office. M.S. wishes to thank SANIMS (RTI2018-095594-B-I00). M.v.D. received support from the ERC under the European Union’s Horizon 2020 program (grant no. 714069). D.S. and C.S. acknowledge funding from ETH research grant ETH-06 17-02. J.C.E.I. acknowledges support from NASA grant 80NSSC18K1633. N.S., D.K., Q.H., R.M., V.L., and A.G.M. acknowledge NASA grant 80NSSC18K1628 for support. V.L. acknowledges support from the Packard Foundation. W.T.P. and C.C. received funding from the UK Space Agency, grant ST/S001239/1. A.H. was funded by the UK Space Agency (grant ST/R002096/1). A.-C.P. acknowledges the financial support and endorsement from the DLR Management Board Young Research Group Leader Program and the Executive Board Member for Space Research and Technology. Author contributions: S.C.S., D.G., S.C., R.F.G., Q.H., D.K., V.L., M.S., N.S., D.S., É.S., C.S., and G.Z. analyzed the seismic data and made ScS arrival time picks. S.C.S., P.L., D.G., Z.X., C.C., and W.T.P. performed the statistical analysis of the observed signals. S.C.S., Q.H., N.S., R.M., and A.G.M. identified the arrivals as ScS waves based on interior models from A.K., H.S., and A.R. A.K., M.D., A.C.D., and H.S. performed the inversions. S.C.S., A.K., P.L., D.G., D.A., J.C.E.I., M.K., C.P., A.-C.P., A.R., T.G., and S.E.S. participated and contributed to the interpretation of the results. Review of the continuous data and detection of marsquakes was done by S.C.S., S.C., G.Z., C.C., N.D., J.C., M.v.D., T.K., M.P., and A.H. with operational support by É.B., C.P., and P.M.D. S.C.S. and A.K. wrote the central part of the paper with contributions from H.S., N.S., D.A., J.C.E.I., A.G.M., A.-C.P., A.R., J.C., and M.v.D. J.C.E.I., R.M., M.K., and V.L. reviewed the contributions to the supplementary materials. The InSight mission is managed by W.B.B., M.P.P., and S.E.S. The SEIS instrument development was led by P.L., D.G., W.T.P., and W.B.B. Supplementary section 1 was written by M.S., D.S., and É.S. with contributions from S.C.S., C.S., and Z.X. Supplementary section 2 was written by D.K. and V.L. with contributions from J.C.E.I. and N.S. Supplementary section 3 was written by M.S. and É.S. Supplementary section 4 was written by R.F.G. with contributions from M.D. Supplementary section 5 was written by Q.H. with contributions from N.S. Supplementary section 6 was written by S.C.S. with contributions from the authors of the other supplements. Supplementary section 7 was written by Z.X. and C.C. with contributions from P.L. and W.T.P. Supplementary section 8 was written by A.K., M.D., A.C.D., and H.S. Supplementary section 9 was written by M.D. Supplementary section 10 was written by A.C.D., A.K., and M.D. Supplementary section 11 was written by D.A. and A.R. with contributions from A.K. Competing interests: The authors declare that they have no competing interests. Data and materials availability: We thank the operators of JPL, SISMOC, MSDS, IRIS-DMC, and PDS for providing SEED SEIS data (87). Three hundred interior models derived in this study are available from MSDS (88)

    Seismic detection of the martian core by InSight

    Get PDF
    A plethora of geophysical, geo- chemical, and geodynamical observations indicate that the terrestrial planets have differentiated into silicate crusts and mantles that surround a dense core. The latter consists primarily of Fe and some lighter alloying elements (e.g., S, Si, C, O, and H) [1]¿. The Martian meteorites show evidence of chalcophile element depletion, suggesting that the otherwise Fe-Ni- rich core likely contains a sulfide component, which influences physical state
    corecore